
Apache Lucene
Searching the Web and Everything Else

Daniel Naber

Mindquarry GmbH

ID 380

 2

AGENDA

> What's a search engine

> Lucene Java

– Features
– Code example

> Solr

– Features
– Integration

> Nutch

– Features
– Usage example

> Conclusion and alternative solutions

 3

About the Speaker

> Studied computational linguistics

> Java developer

> Worked 3.5 years for an Enterprise Search company (using Lucene Java)

> Now at Mindquarry, creators on an Open Source Collaboration Software
(Mindquarry uses Solr)

 4

Question: What is a Search Engine?

> Answer: A software that

– builds an index on text

– answers queries using that index

“But we have a database already“

– A search engine offers
 Scalability
 Relevance Ranking
 Integrates different data sources (email, web pages, files, database, ...)

 5

What is a search engine? (cont.)

> Works on words, not on substrings
auto != automatic, automobile

> Indexing process:

– Convert document

– Extract text and meta data

– Normalize text

– Write (inverted) index

– Example:
 Document 1: “Apache Lucene at Jazoon“
 Document 2: “Jazoon conference“
Index:

 apache -> 1
 conference -> 2
 jazoon -> 1, 2
 lucene -> 1

 6

Apache Lucene Overview

> Lucene Java 2.2

– Java library

> Solr 1.2

– http-based index and search server

> Nutch 0.9

– Internet search engine software

> http://lucene.apache.org

 7

Lucene Java

> Java library for indexing and searching

> No dependencies (not even a logging framework)

> Works with Java 1.4 or later

> Input for indexing: Document objects

– Each document: set of Fields, field name: field content (plain text)

> Input for searching: query strings or Query objects

> Stores its index as files on disk

> No document converters

> No web crawler

 8

Lucene Java Users

> IBM OmniFind Yahoo! Edition

> technorati.com

> Eclipse

> Furl

> Nuxeo ECM

> Monster.com

> ...

 9

Lucene Java Features

> Powerful query syntax

> Create queries from user input or programmatically

> Fast indexing

> Fast searching

> Sorting by relevance or other fields

> Large and active community

> Apache License 2.0

 10

Lucene Query Syntax

> Query examples:

– jazoon

– jazoon AND java <=> +jazoon +java

– jazoon OR java

– jazoon NOT php <=> jazoon -php

– conference AND (java OR j2ee)

– “Java conference“

– title:jazoon

– j?zoon

– jaz*

– schmidt~ schmidt, schmit, schmitt

– price:[000 TO 050]

– + more

 11

Lucene Code Example: Indexing

01 Analyzer analyzer = new StandardAnalyzer();
02 IndexWriter iw = new IndexWriter("/tmp/testindex", analyzer, true
);
03
04 Document doc = new Document();
05 doc.add(new Field("body", "This is my TEST document",
06 Field.Store.YES, Field.Index.TOKENIZED));
07 iw.addDocument(doc);
08
09 iw.optimize();
10 iw.close();

loop

StandardAnalyzer: my, test, document

 12

Lucene Code Example: Searching

01 Analyzer analyzer = new StandardAnalyzer();
02 IndexSearcher is = new IndexSearcher("/tmp/testindex");
03
04 QueryParser qp = new QueryParser("body", analyzer);
05 String userInput = "document AND test";
06 Query q = qp.parse(userInput);
07 Hits hits = is.search(q);
08 for (Iterator iter = hits.iterator(); iter.hasNext();) {
09 Hit hit = (Hit) iter.next();
10 System.out.println(hit.getScore() + " " + hit.get("body"));
11 }
12
13 is.close();

 13

Lucene Hints

> Tools:

– Luke – Lucene index browser http://www.getopt.org/luke/

– Lucli

> Common pitfalls and misconceptions

– Limit to 10.000 tokens by default – see IndexWriter.setMaxFieldLength()

– There's no error if a field doesn't exist

– You cannot update single fields

– You cannot “join” tables (Lucene is based on documents, not tables)

– Lucene works on strings only -> 42 is between 1 and 9
 Use “0042“

– Do not misuse Lucene as a database

 14

Advanced Lucene Java

> Text normalization (Analyzer)

– Tokenize foo-bar: text -> foo, bar, text

– Lowercase

– Linguistic normalization (children -> child)

– Stopword removal (the, a, ...)
 You can create your own Analyzer (search + index)

> Ranking algorithm

– TF-IDF (term frequency – inverse document frequency)

– You can add your own algorithm

– Difficult to evaluate

 15

Lucene Java: How to get Started

> API docs

– http://lucene.zones.apache.org:8080/hudson/job/Lucene-
Nightly/javadoc/overview-summary.html#overview_description

> FAQ

– http://wiki.apache.org/lucene-java/LuceneFAQ

 16

Lucene Java Summary

> Java Library for indexing and searching

> Lightweight / no dependencies

> Powerful and fast

> No document conversion

> No end-user front-end

 17

Solr

> An index and search server (jetty)

> A web application

> Requires Java 5.0 or later

> Builds on Lucene Java

> Programming only to build and parse XML

– No programming at all using Cocoon

> communicates via HTTP

– index: use http POST to index XML

– search: use GET request, Solr returns XML
 Parameters e.g.

 q = query
 start
 rows

– Future versions will make use without http easier (Java API)

 18

Solr Indexing Example

> http POST to http://localhost:8983/solr/update

<add>
 <doc>
 <field name="url">http://www.myhost.org/solr-rocks.html</field>
 <field name="title">Solr is great</field>
 <field name="creationDate">2007-06-25T12:04:00.000Z</field>
 <field name="content">Solr is a great open source search server. It
 scales, it's easy to configure....</field>
 </doc>
</add>

> Delete a document: POST this XML:
<delete><query>myID:12345</query></delete>

 19

Solr Search Example

GET this URL: http://localhost:8983/solr/select/?indent=on&q=solr

Response (simplified!):

<response>

 <result name="response" numFound="1" start="0" maxScore="1.0">

 <doc>

 <float name="score">1.0</float>

 <str name="title">Solr is Great</str>
 <str name="url">http://www.myhost.org/solr-rocks.html</str>

 </doc>

</response>

 20

Solr Faceted Browsing

> Makes it easy to browse large search results

 21

Solr Faceted Browsing (cont.)

schema.xml:
<field name="topic" type="string"
indexed="true" stored="true"/>

Query URL:
http://.../select?facet=true&
 facet.field=topic

Output from Solr:
<lst name="topic">
 <int name="Genetic algorithms">6</int>
 <int name="Artificial intelligence">3</int>
 ...

 22

Solr: How to get Started

> Download Solr 1.2

> Install the WAR

> Use the post.jar from the exampledocs directory to index some documents

> Browse to the admin panel at http://localhost:8080/solr/admin/ and make some
searches

> Configure schema.xml and solrconfig.xml in WEB-INF/classes

> Details at “Search smarter with Apache Solr“

– http://www.ibm.com/developerworks/java/library/j-solr1/

– http://www.ibm.com/developerworks/java/library/j-solr2/

> FAQ

– http://wiki.apache.org/solr/FAQ

 23

Solr Summary

> A search server

> Access via XML sent over http

– Client doesn't need to be Java

> Web-based administration panel

> Like Lucene Java, it does no document conversion

> Security: make sure your Solr server cannot be accessed from outside!

 24

Nutch

> Internet search engine software (software only, not the search service)

> Builds on Lucene Java for indexing and search

> Command line for indexing

> Web application for searching

> Contains a web crawler

> Adds document converters

> Issues:

– Scalability

– Crawler Politeness

– Crawler Management

– Web Spam

 25

Nutch Users

> Internet Archive

– www.archive.org

> Krugle

– krugle.com

> Several vertical search engines, see
http://wiki.apache.org/nutch/PublicServers

 26

Getting started with Nutch

> Download Nutch 0.9 (try SVN in case of problems)

> Indexing:

– add start URLs to a text file

– configure conf/crawl-urlfilter.txt

– configure conf/nutch-site.xml

– command line call
 bin/nutch crawl urls -dir crawl -depth 3 -topN 50

> Searching:

– install the WAR

– search at e.g. http://localhost:8080/

 27

Getting started with Nutch (cont.)

 28

Getting started with Nutch (cont.)

 29

Nutch Summary

> Powerful for vertical search engines

> Meant for indexing Intranet/Internet via http, indexing local files is possible with
some configuration

> Not as mature as Lucene and Solr yet

> You will need to invest some time

 30

Other Lucene Features

> „Did you mean...“

– Spell checker based on the terms in the index

– See contrib/spellchecker in Lucene Java

> Find similar documents

– Selects documents similar to a given document, based on the document's
significant terms

– See contrib/queries MoreLikeThis.java in Lucene Java

> NON-features: security

– Lucene doesn't care about security!
 You need to filter results yourself
 For Solr, you need to secure http access

 31

Other Projects at Apache Lucene

> Hadoop - a distributed computing platform

– Map/Reduce

– Used by Nutch

> Lucene.Net - C# port of Lucene, compatible on any level (API, index, ...)

– Used by Beagle, Wikipedia, ...

 32

Lucene project – The big Picture

> Lucene: Java fulltext search library

> Nutch = Lucene Java + Hadoop
 + Web crawler
 + Document converters
 + Web search frontend
 + Link analysis
 + Distributed search

> Solr = Lucene Java
 + Web administration frontend
 + HTTP frontend
 + Typed fields (schema)
 + Faceted Browsing
 + Configurable Caching
 + XML configuration, no Java

 needed
 + Document IDs
 + Replication

 33

Alternative Solutions for Search

> Commercial vendors (FAST, Autonomy, Google, ...)

– Enterprise search

> Commercial search engines based on Lucene and Lucene support (see Wiki)

– IBM OmniFind Yahoo! Edition

> RDBMS with integrated search features

– Lucene has more powerful syntax and can be easily adapted and integrated

> Egothor

– Lucene has a much bigger community

 34

Conclusion

> - no “Enterprise Search” (but: Intranet indexing using Nutch)

> + can be embedded or integrated in almost any situation

> + fast

> + powerful

> + large, helpful community

> + the quasi-standard in Open Source search

Daniel Naber dnaber@apache.org

www.danielnaber.de

Mindquarry GmbH

www.mindquarry.com

Presentation license:
http://creativecommons.org/licenses/by/3.0/

