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Abstract—We investigate helical cone-beam reconstruction us-
ing differentiated backprojection on π-lines and a subsequent in-
verse Hilbert transform. We report in particular on an implemen-
tation scheme that allows efficient reconstruction in the geometry
of current Multi-Slice-CT scanners. This scheme is based on
reconstruction on “theoretical” π-lines (π-lines that would have
been measured in a continuous measurement system but are not
actually measured because only a finite number of projections are
measured in practice) and thus allows us to specify the sampling
of the backprojection grid independently of the sampled source
positions. We have identified six significant variations within our
implementation scheme, which differ mainly in the way the DBP
is implemented. We provide a description of all six variants of
the algorithm and evaluate their advantages and disadvantages
and give examples of reconstructions of the FORBILD thorax
phantom.

Index Terms—Helical Cone-Beam CT, Two-Step Hilbert algo-
rithm, π-line.

I. INTRODUCTION

In the field of Computed Tomography (CT) the idea of
a two-step Hilbert reconstruction algorithm, consisting of a
Differentiated Backprojection (DBP) followed by an inverse
Hilbert transform (HT), has recently received attention as a
method of exact image reconstruction. See [1]–[4] for various
presentations of this HT-DBP method.

The HT-DBP method is especially attractive because it al-
lows reconstruction from both laterally and transversally trun-
cated data. Furthermore, for Helical Cone-Beam CT (HCBT)
it requires only the data within the Tam-Danielsson (TD)
window [5], [6]. Most of the HT-DBP algorithms for this
geometry are designed to reconstruct data along so-called “π-
lines”, i.e. lines which intersect the vertex path twice, with the
two intersection points separated by less than one helix turn.
This allows reconstruction everywhere within the ROI as it
can be proved that each point inside the helix lies on one and
exactly one π-line [5].

The first works on HT-DBP [1]–[4] were tailored for the
flat detector, however, Zou et al. recently published the details
of the transformation to the practically more significant case
of a curved detector geometry [7]. Moreover, Yu et al. lately
introduced a rebinning version of the two-step Hilbert algo-
rithm to the pseudo-parallel “wedge” geometry [8], [9] using
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a flat detector [10]. However, due to the complex geometry
of π-lines it has remained largely unclear until today whether
π-line based HT-DBP algorithms could be made practical in a
way that they are suitable for currently manufactured medical
Multi-Slice CT (MSCT) scanners, e.g. allowing an efficient
reconstruction with an arbitrary reconstruction grid in the x-
y-plane and supporting the slice thickness concept.

In this work we present an implementation scheme for HT-
DBP reconstruction on π-lines that was developed following
the ideas presented in [11] for implementing Katsevich’s
formula for exact HCBT [12]. This scheme is adapted for data
acquired using a curved detector and is based on reconstruction
on what we call “theoretical” π-lines (i.e. on a subset of the
unlimited set of π-lines that would have been measured in
a continuous measurement system, as opposed to “real” π-
lines that connect only source positions where projections are
actually measured). This choice enables the reconstruction grid
to be varied freely in the (x, y)-plane.

We have identified six significant variations within our
implementation scheme. In the following we concentrate on
a description of all six variants of the algorithms and sub-
sequently discuss their advantages and disadvantages (sec-
tion III). An evaluation of these variants against each other
is being performed by measurements of resolution and noise
along with reconstructions of the FORBILD thorax phantom.
We present our first results in section IV.

II. GEOMETRY

A. Data acquisition

This section gives a short overview of the geometry and
notation used in this report. The vertex path is given as

a(λ) = [R0 cos(λ + λ0), R0 sin(λ + λ0), z0 + hλ] (1)

where λ is the rotation angle of the source in the interval
[0, λmax], R0 is the helix radius and 2πh the helix pitch. The
vertex path is adjusted by λ0 and z0 such that at λ = 0 the
source is located at angle λ0 in the plane z = z0.

Apart from the standard (x, y, z) geometry, we also use a
coordinate system rotating with the data acquisition system as
depicted in figure 1. The orthonormal basis of this coordinate
system is given by the vectors

eu(λ) = [� sin(λ + λ0), cos(λ + λ0), 0] , (2)
ev = [0, 0, 1] , (3)
ew(λ) = [cos(λ + λ0), sin(λ + λ0), 0] . (4)

The detector consists of an array of Nrows � Ncols elements,
which are, column-wise, arranged parallel to ev and, row-wise,
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Fig. 1: Data acquisition geometry.

forming arcs around a line La parallel to the z-axis through the
vertex point. Despite of being counted in the direction of eu

and ev , respectively, the detector units are denoted by the angle
γ and w, as the detector does not lie fully in the plane defined
by eu and ev . We furthermore denote with D the distance
from the line La through the focal point to the detector and
with f(x) the 3D object density to be reconstructed. In our
notation the measurements are obtained as

g(λ, γ, w) =

∫ ∞

0

f(a(λ) + t�(λ, γ, w))dt (5)

with

�(λ, γ, w) =
(D sin γ eu(λ) � D cos γ ew(λ) + w ev)

√
D2 + w2

. (6)

The upper and lower boundary of the TD window in this
geometry are given by [11]:

wtop = �
Dh

R0

π/2 + γ

cos γ
, wbottom =

Dh

R0

π/2 � γ

cos γ
. (7)

B. Arrangement of the backprojection geometry

For backprojection we need to change the standard (x, y, z)-
geometry so that we can work on sets of parallel theoretical
π-lines. We restrict ourselves, with no loss of generality, to
working on π-lines having a positive slope and re-arrange
the reconstruction volume to a stack of surfaces of “parallel”
π-lines. Fig. 2 depicts one such surface. Each surface is
indexed by a vertex position λfilt, where a(λfilt) denotes the
starting point of a π-line which intersects with the z-axis
(see again fig. 2). All π-lines on a given surface have their
projections on the (x, y)-plane parallel to each other, and λfilt

defines the direction of these lines. Note, however, that by
construction every π-line intersects the vertex path twice and

thus π-lines defined by the same λfilt are not parallel in the z
dimension. Accordingly, a set of π-lines as in figure 2 does not
define a plane in space, but merely a twisted surface in space.
Yet, using proper interpolation we can still do reconstruction
using these surfaces.

For indexing onto each π-line surface we use a (s, �)-grid
which is obtained by rotating the x- and y-axes such that

es(λfilt) = [� sin(λfilt + λ0), cos(λfilt + λ0), 0] , (8)
e� (λfilt) = [� cos(λfilt + λ0), � sin(λfilt + λ0), 0] . (9)

In other words, s denotes a signed distance of the projections
of the π-lines onto the (x, y)-plane from the origin, and � is a
coordinate along those projections. We furthermore introduce
a variable t along the π-lines such that the projection of t onto
the (x, y)-plane yields � . The z-position of a point indexed by
(s, �, λfilt) is then given by

z = z0 + h

(
λfilt +

π

2
+

� (π/2 � arcsin (s/R0))√
R2

0 � s2

)
. (10)

For a given volume (x, y, z) this equation also allows us
to determine the range of λfilt, over which backprojection
should be carried out to cover the volume of interest. We then
set the distance between the surfaces of π-lines over which
backprojection is carried out to

∆λfilt = ∆z/h, (11)

where ∆z is the desired voxel size in z.
The backprojection grid can be arranged in two different

ways:
1) The grid is laid out on an arbitrary (s, �)-grid, and

backprojection is directly performed in this (s, �, λfilt)
coordinate system. The final reconstruction is then ob-
tained by applying the inverse HT in the same geometry
and a subsequent interpolation to the (x, y, z)-grid.

2) The backprojection is still done on the surface of theo-
retical π-lines, but the grid is laid out on a (x, y)-grid,
resulting in a (x, y, λfilt) coordinate system. The back-
projection result then is interpolated to the (s, �, λfilt)
system for the inverse HT and finally to the (x, y, z)-
grid.

The second method has the advantage that the (x, y)-positions
of the voxels to be reconstructed do not change over λfilt,
which accelerates backprojection. However, due to the addi-
tional interpolation needed for the inverse HT, image quality
has to be closely monitored.

III. ALGORITHMS AND IMPLEMENTATION STRATEGIES

A. Inversion of the Hilbert Transform

In contrast to a standard filtered backprojection (FBP)
approach, the differentiated backprojection (DBP) does not
directly result in a theoretically exact reconstruction of f(x),
but merely in a Hilbert transform of f(x) along the π-
lines described above. Implementing a two-step Hilbert recon-
struction thus includes finding a good way to apply an inverse
HT to the backprojection result. A method of doing so has
been suggested earlier [13], and thus will be just sketched
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Fig. 2: Reconstruction geometry.

shortly. In the following we will denote the outcome of the
backprojection as (Hf)(x) and the final reconstruction as
f̂(x).

As stated in [14], an inverse HT along the direction of a unit
vector � for a function with limited support can be achieved
by use of

f̂(x + t�) =
�1√

(t � tmin)(tmax � t)

[
C(x) + ...

... +

∫ tmax

tmin

(Hf)(x + t′�)

t � t′

√
(t′ � tmin)(t′max � t) dt′

]
,

(12)

if f(x + t�) ≡ 0 for t /∈ (tmin, tmax). The function C(x) can
be computed in different ways: see, e.g. [3], [10], [13]. For
our implementation, we found it easiest to set

C(x) = �
2 �
∫∞

�∞
f(x + t�) dt

π
, (13)

as we can get a good approximation of this value directly
from the measured data. We implement eq. 12 the way it was
suggested in [3], [13] using a rectangular apodization window
and a half-pixel shift of the output to avoid aliasing artifacts.

B. Differentiated Backprojection (DBP)

The different variants of implementing the DBP presented
in this work can be divided into three classes:

1) Taking the derivative with respect to detector coordinates
only. As this method requires backprojection with a
squared distance weight, we have dubbed it “DBP-2”.

2) Taking the derivative of the measured data with respect
to λ at fixed ray direction. This “DBP-1” method re-
quires no square in the backprojection weight.

3) Rebinning the data to the pseudo-parallel wedge geom-
etry first and doing differentiation and backprojection
in that geometry. This “DBP-0” method requires no
backprojection weight.

Together with the two different methods of creating the
backprojection grid described in section II-B this makes an
overall of six different versions of DBP-HT. In the following

we will present the different variants of the DBP used in our
work and details of their implementation.

1) DBP-2: This approach of implementing the DBP is
presented in detail in [3]. It features differentiation only in
detector coordinates and a backprojection weight of the square
of the distance from the current voxel to the vertex point,
projected onto the (x, y)-plane. For a curved detector geometry
we have [7]

(Hf)(x) = �
1

2π

[
2∑

q=1

(�1)qg(λq, γ∗(λq, x), w∗(λq, x))

‖x � a(λq)‖

+

∫ λ2(x)

λ1(x)

DgF (λ, γ∗(λ, x), w∗(λ, x))

η(λ, x)2
dλ

]
(14)

with λ1(x) and λ2(x) denoting the first and second intersec-
tion of the π-line through x with the vertex path, and with

η(λ, x) = R0 � x cos(λ + λ0) � y sin(λ + λ0), (15)

γ∗(λ, x) = arctan

(
y cos(λ + λ0) � x sin(λ + λ0)

η(λ, x)

)
, (16)

w∗(λ, x) =
D cos(γ∗(λ, x))

η(λ, x)
(z � z0 � hλ) , (17)

and

gF (λ, γ, w) = R0
cos2 γ

D

∂�g

∂γ
+cos γ(h�R0w

sin γ

D
)
∂�g

∂w
(18)

where �g = �g(λ, γ, w) = (D/
√

D2 + w2) g(λ, γ, w).
For reconstruction of one surface of π-lines we first compute

the z value of each voxel on the desired (s, �) or (x, y)
grid. The backprojection for each surface of π-lines indexed
by λfilt is then carried out over the interval λ ∈ [λfilt �
γFOV, λfilt + π + γFOV], where γFOV = arcsin(RFOV/R0)
with RFOV denoting the radius of the field-of-view. To handle
the voxel dependence of the range of projections over which
the backprojection is carried out we use a technique suggested
and described in detail in section 4.3.5, eqs. (59)–(64) of [11].
We also use this technique to estimate the boundary terms in
(14).

2) DBP-1: The implementation of this variant is the same
as the one for Katsevich’s algorithm presented in [11] up to
a replacement of the filtering step by a differentiation with
respect to λ at fixed ray direction. Because of space limitations
we do not give details in this abstract, however we will provide
them in the final presentation.

3) DBP-0: The third approach of implementing the DBP is
based on a rebinning of the measured data to a pseudo-parallel
geometry according to

ϑ(λ, γ) = λ +
π

2
� γ, sr(λ, γ) = R0 sin γ, (19)

with w remaining untouched during rebinning. The backpro-
jection formula after rebinning can be shown to be

(Hf)(x) = �
1

2π

∫ ϑfilt+π

ϑfilt

D � �grb(ϑ, s∗r (ϑ, x), w∗(ϑ, x))√
D2 + (w∗(ϑ, x))2

dϑ

(20)
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with

�grb(ϑ, sr, w) =
∂

∂sr
grebin(ϑ, sr, w), (21)

s∗r (ϑ, x) = x cos(ϑ + ϑ0) + y sin(ϑ + ϑ0), (22)

w∗(ϑ, x) =
D (z � z0 � h (ϑ � π/2 + arcsin (s∗r/R0)))

y cos(ϑ + ϑ0) � x sin(ϑ + ϑ0) +
√

R2
0 � s∗r

2

(23)

and ϑfilt = λfilt + π/2 and ϑ0 = λ0 + π/2. As can be seen,
this approach reduces the filtering to a single derivative ∂/∂sr,
which constitutes a great advantage for the implementation.
Furthermore, both the backprojection weight and the voxel-
dependence of the backprojection range within any given
surface of π-lines are eliminated. After deciding in favor of
a (s, �)- or (x, y) backprojection grid and computing the z
values of the voxels accordingly, we therefore can run the
integration directly over the interval [ϑfilt, ϑfilt + π] without
further worrying about the reconstruction range. For imple-
menting the integration as a sum in this context we suggest
using the well-known trapezoidal rule.

IV. RESULTS

Due to lack of space we are only able to show a few
selected results here. For comparing the different versions of
the DBP, we present reconstructions of the FORBILD thorax
phantom using the different algorithms. We simulated helical
cone-beam data with and without Poisson noise corresponding
to an emission of 500 000 photons per ray, with R0 = 57 cm,
D = 104 cm and 1160 projections per turn with a helix pitch
of 6.58 cm. The curved detector consists of 673�64 elements
with a size of 0.14083 � 0.13684 cm2. The reconstructed
images presented here all have a size of 600 � 383 square
pixels of side 0.007 cm and the inverse HT was perfomed
along the image columns.

Fig. 3 compares two different reconstructions obtained
using DBP-1 in the plane z = �0.065 cm, whereat the
backprojection was carried out on a (x, y)-grid for the first
one, on a (s, �)-grid for the second one. Fig. 4 compares
two reconstructions without added noise on a surface of π-
lines with no interpolation in z at λfilt = 3π/2. The first
one was obtained by using DBP-2, the second one by using
DBP-0. Fig. 5 finally shows the same reconstructions as in
fig. 4, but with Poisson noise added to the data before starting
reconstruction.

Note that we have not yet performed any resolution match-
ing and only a few noise measurements, so these figures
constitute an illustrative result only at this time. However, we
plan to have performed these investigations by the time of the
conference.
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