
A Comparison of WS-BusinessActivity and BPEL4WS 
Long-Running Transaction 

Patrick Sauter1, Ingo Melzer2 

 
1Universität Ulm, Fakultät für Informatik, 89069 Ulm, Germany 

ps9@informatik.uni-ulm.de 
2DaimlerChrysler AG Research and Technology, Postfach 2360, 89013 Ulm, Germany 

paper@ingo-melzer.de 

Abstract. Although WS-BusinessActivity and BPEL4WS Long-Running 
Transaction (LRT) are conceptually very similar and are both designed to sup-
port the execution of complex business transactions, they differ in a large num-
ber of aspects. This is particularly true because BPEL4WS, unlike WS-
BusinessActivity, was not designed to support distributed coordination. This 
paper comprehensively discusses the similarities and differences between WS-
BusinessActivity and BPEL4WS LRT and demonstrates the two concepts on 
the basis of a joint example. The proposal is to replace BPEL4WS' concept of 
compensation handlers with a more comprehensive handler type – coordination 
handlers – that communicate only via SOAP messages and thus make WS-
BusinessActivity redundant. 

1 Introduction 

Within less than three years since its initial release, the Business Process Execution 
Language for Web Services (BPEL4WS [1]) has gained wide industry and research 
acceptance. BPEL4WS' goal is to describe, coordinate, and execute complex business 
processes by combining Web Services with workflow concepts. BPEL4WS will serve 
as a general framework for composing existing Web Services into coarser-grained, 
more complex, and possibly long-running applications. The Long-Running Transac-
tion (LRT) coordination protocol is part of the BPEL4WS specification and is a 
mechanism for dealing with errors during such a long-running activity. 

WS-BusinessActivity, on the other hand, is part of the Web Services Transaction 
Framework (WSTF) which also consists of WS-Coordination [2] and WS-
AtomicTransaction [3]. The main purpose of WS-BusinessActivity [4] is to coordinate 
long-running, compensation-based activities that may consist of several AtomicTrans-
actions. 

As a result, it might seem that WS-BusinessActivity and BPEL4WS LRT are 
rather unrelated approaches to transactions or activities of long duration. The 
BPEL4WS specification [1] itself states that “the achievement of distributed agree-
ment is an orthogonal problem outside the scope of BPEL4WS, to be solved by using 
the protocols described in the WS-Transaction specification”. (Notice that WS-
Transaction now is deprecated and has been split into WS-AtomicTransaction and 
WS-BusinessActivity.) In this paper, however, we will argue that the two concepts are 



not that different after all and can be merged to form a single modeling tool for any 
kind of long-running transaction. 

Therefore, the contribution of this paper is 
• the discussion why WS-BusinessActivity and BPEL4WS LRT are neither or-

thogonal nor contradicting approaches to complex business transactions and 
• the description of how their differences can be overcome by fully incorporating 

WS-BusinessActivity into BPEL4WS. 

2 Related Work 

Both BPEL4WS and WS-BusinessActivity are relatively new specifications that have 
emerged during the last few years. Although they clearly are not competing specifica-
tions for the same purpose, they share both their underlying transaction model of so-
called “open nested transactions” and the idea to invoke explicitly coded compensat-
ing actions in the event of failure during the execution of a transaction. These con-
cepts will now be introduced briefly: 

In short, an open nested transaction is a tree (of arbitrary height) of so-called 
“subtransactions”. Open nested transactions are the generalization of nested transac-
tions which are sometimes also referred to as “closed nested transactions”. The chil-
dren of a closed nested transaction may commit only when the parent commits. As a 
result, the overall transaction commits when the root commits, with no individual part 
of work to be completed (committed) earlier [5, 6]. This limitation does not make 
sense for long-running, distributed transactions, because it would imply that locks on 
resources have to be kept for a long period of time until the root commits. Therefore, 
the subtransactions of an open nested transaction (which is mainly used for distributed 
transactions) may commit independently of each other without having to wait for the 
root transaction to commit. 

The next important question on open nested transactions is what the parent trans-
action should do if one of its child subtransactions has failed. Basically, this behavior 
is left to the implementor of the transaction – he may decide whether the overall trans-
action should abort or simply ignore the failed subtransaction. For example, an order-
ing system that chooses the cheapest supplier might still be able to commit success-
fully if only one of the suppliers fails during the transaction. 

The concept of open nested transactions has not been incorporated into WS-
BusinessActivity and BPEL4WS LRT without adaptations. In particular, both are 
using only a “variant” [1] of open nested transactions and therefore use the terms 
“nested scopes” (and “nested activities”) instead of “subtransactions”. A scope is the 
definition of a logical unit of work as well as the smallest unit of error handling and 
can best be compared with a “try” block in Java. Since scopes can be nested, the re-
sulting structure can also be regarded as a tree. 

In BPEL4WS, every scope can be assigned a compensation handler. Compensa-
tion refers to the idea of invoking explicitly coded business logic to undo the effects 
of a successfully committed action or transaction. A scope's compensation handler 
therefore contains the appropriate compensation logic, e.g. a WSDL portType 
reference. 



Each of these three concepts – open nested transactions, nested scopes, and com-
pensation – has been incorporated into the specifications of both WS-BusinessActivity 
and BPEL4WS. In particular, the idea of coordinating scopes has been incorporated 
into BPEL4WS by means of the Long-Running Transaction (LRT) coordination pro-
tocol [1, Section 13.2 and Appendix C]. In effect, LRT directly uses the names of 
states and state transitions of WS-Transaction for coordination among BPEL4WS 
scopes. The differences of how nested scopes are used by the two specifications will 
be discussed in the subsequent section. 

Apart from WS-BusinessActivity, there are two other important specifications re-
lated to transactions for Web Services: WS-Coordination and WS-AtomicTransaction. 

In short, 
• WS-Coordination provides the protocol for distributing the coordination context of 

a transaction (e.g. a unique transaction ID) to its participants. For example, WS-
Coordination specifies the interface of a transaction manager (a so-called coordi-
nator) for creating a new or joining an already existing transaction. Both WS-
AtomicTransaction and WS-BusinessActivity are so-called coordination types that 
are built on top of WS-Coordination. 

• A WS-AtomicTransaction is a short-lived (though not necessarily fully ACID-
compliant [7]) transaction implementing the two-phase commit (2PC) protocol in 
terms of Web Services. Typically, an AtomicTransaction is used for locking re-
sources exclusively and sending the Rollback notification in the event of fail-
ure. 
In this context, WS-BusinessActivity can be seen as a framework for putting to-

gether a large number of AtomicTransactions (that all share the same Coordina-
tionContext as provided by WS-Coordination) that are compensated when the 
overall BusinessActivity fails. In contrast to an AtomicTransaction, a BusinessActivity 
is long-running and typically asynchronous. These three specifications are also re-
ferred to as the Web Services Transaction Framework (WSTF). 

Another noticeable specification related to transactions for Web Services is the 
Business Transaction Protocol (BTP, [8]) by OASIS. This paper, however, focuses on 
the WSTF, because it currently is the most widely accepted specification and the two 
Web Services heavyweights, IBM and Microsoft, are backers of both the WSTF and 
BPEL4WS. 

Moreover, we will analyze the distinction between WS-BusinessActivity and 
BPEL4WS. The October 2003 paper “The Next Step in Web Services” [9] suggests 
that these two specifications, among others, should be used in combination. Curbera et 
al. explicitly consider the combined use of BPEL4WS, WS-Transaction (now: WS-
AtomicTransaction and WS-BusinessActivity), and WS-Coordination and state that 
WS-BusinessActivity (together with WS-Coordination) should be used “in environ-
ments where BPEL4WS scopes are distributed or span different vendor implementa-
tions”. In other words, several BPEL4WS workflows should register as participants to 
join a BusinessActivity, i.e. BPEL4WS is “smaller” or finer-grained than WS-
BusinessActivity. Figure 1 illustrates this idea. 



the overall BusinessActivity

BusinessActivity 
coordinator

registration 
interface

register for transaction

BPEL4WS participant 1

BPEL4WS participant 2

BPEL4WS participant 3

register for transaction

register for transaction

 

Figure 1 shows the notion of Curbera et al. Here, many “smaller” BPEL4WS instances register 
for participation in a “large” BusinessActivity. 

In the subsequent sections, we will show that there are alternative views on the re-
lationship between BPEL4WS and WS-BusinessActivity. 

3 Differences between WS-BusinessActivity and BPEL4WS LRT 

There are several similarities as well as an even greater number of differences between 
WS-BusinessActivity and BPEL4WS Long-Running Transaction. This section rigor-
ously lists these differences and similarities (the latter are denoted in italics) as a table 
and then discusses the most crucial deviations. We will later argue that the differences 
can be overcome by simply prescribing the manner in which a BPEL4WS LRT 
communicates with its nested (child) scopes. 

 

Table 1 compares the key features and characteristics of BPEL4WS Long-Running Transaction 
with those of WS-BusinessActivity. 

 BPEL4WS LRT WS-BusinessActivity 
paradigm orchestrate a flow of Web Services 

towards a coarser-grained (higher-
level) service; act as a wrapper for a 
flow of “smaller” services 

coordinate a set of distributed Web 
Services (e.g. AtomicTransactions) to 
reach a mutually agreed outcome; 
also includes WS-Coordination 

number of 
participants 

pre-determined; all potentially in-
volved types of partners (their WSDL 
descriptions) are known at binding-
time 

dynamic; participants may join or 
leave the BusinessActivity at any time 
as long as they implement the Busi-
nessActivity WSDL interface 

error 
messages 

errors (fault and compensation) are 
handled internally, and no explicit 
error messages are sent; instead, e.g. 
a compensate() method is called 

explicitly described by the specifica-
tion: error messages (so-called “noti-
fications”, e.g. Compensate) to the 
participants are sent as SOAP mes-
sages 

business 
error 
handling 
concept 

nested scopes and compensation; the 
unit of error handling is a scope; 
a scope is a set of local activities 

nested scopes and compensation; the 
unit of error handling is a scope; 
a scope is a set of distributed activi-
ties 



fatal error 
handling 
concept 

the occurrence of a BPEL4WS fault 
causes the entire scope to exit; the 
already completed activities are 
compensated and a fault handler is 
invoked; similar to try-catch-blocks 

go to state Faulting; this state 
cannot be reached directly from the 
Completed state, because compen-
sation has to be tried first; Fault-
ing means that a compensation 
attempt has failed 

place to 
implement 
the 
compensa-
tion handler 

each scope is assigned a dedicated 
compensation handler that is invoked 
if the entire scope has to be compen-
sated; therefore, a service might have 
multiple compensation handlers 

the BusinessActivity-compliant ser-
vice itself must understand and be 
able to process the Compensate 
notification 

short-
running 
transaction 
support 

may consist of several AtomicTrans-
actions 

may consist of several AtomicTrans-
action 

designed 
for… 

complex long-running transactions 
(so-called “activities”) 

complex long-running transactions 

scope of the 
specification 

136 pages; complex workflow se-
mantics described; defines its own 
coordination protocol (LRT) 

21 pages; focus not on describing 
semantics, but on states and state 
transitions; defines two slightly dif-
ferent coordination protocols 

order of 
activities/ 
steps 

described in detail by the process 
description, i.e. the .bpel file 

has to be defined by other means, e.g. 
has to be hard-coded or the order may 
even be arbitrary; only the coordina-
tion message flow of the overall 
activity/transaction is pre-defined 

 
Many of the differences listed in Table 1 are implied by the differing intended 

purposes of the two specifications – graph-oriented workflow description and execu-
tion on the one hand, distributed transactions on the other hand. However, because a 
coordinated and mutually agreed outcome of an activity is also an important quality 
aspect of business-critical (BPEL4WS) workflows, the LRT protocol was added to 
BPEL4WS. Unfortunately, one thing was forgotten: the ability to coordinate distrib-
uted scopes. LRT supports only the coordination of scopes that are local within the 
same BPEL4WS engine. As a result, WS-BusinessActivity is still required for all 
distributed long-running transactions. Figure 2 illustrates this relationship. 

WS-BusinessActivity, in turn, has two main problems associated with it: 
• It does not offer much additional functionality for coordinating long-running trans-

actions compared to BPEL4WS LRT. 
• WS-BusinessActivity is a very simple mechanism intended to support very com-

plex operations. It does not provide mechanisms for dealing with complex activity 
flows. Consequently, a lot of work is left to the implementor and much of the 
transaction’s business logic has to be hard-coded. 
The more complex a transaction is, the more does it make sense to model it as a 

workflow. For example, a very complex financial transaction that involves debiting 
and crediting a large number of accounts in a particular order can be modeled more 
easily as a BPEL4WS workflow than as a BusinessActivity. This is because WS-



BusinessActivity does not provide constructs such as sequences, branches, iterations, 
etc. that make the actual flow of the transaction’s steps more explicit. 
 

workflow 
description 

and 
execution

local scopes

BPEL4WS

LRT

WS-Business
Activity

distributed scopes

coordination of nested scopes

 

Figure 2 depicts the relationship between BPEL4WS, LRT and BusinessActivity in a set-style 
notation. 

The next section demonstrates the implications of BPEL4WS LRT’s lacking dis-
tributed coordination support for the implementation of a typical transactional Web 
Service. Later, in Section 5, we will conclude that this limitation of BPEL4WS can be 
overcome with little effort, thereby making WS-BusinessActivity redundant. 

4 Usage Scenarios and Associated Problems 

Reaching distributed agreement is the most important aim of WS-BusinessActivity. In 
this paper, we will use the example of a patient tracking system in a hospital to dem-
onstrate a typical usage scenario for distributed coordination. 

Consider the following situation: A hospital wants to give every stationary patient 
a unique number, possibly the combination of a person ID with a residence number, 
and coordinate the treatment by always referencing this number. Part of the treatment 
might be e.g. appointments in the rehabilitation center or the department of cardiol-
ogy. Since a hospital essentially is a set of distributed wards interacting with each 
other, the hospital decides to use Web Service standards for its patient tracking sys-
tem. They start with providing every patient with a WS-Coordination Coordina-
tionContext [2] that consists of his person ID and residence number. 

To avoid schedule collisions, every arrangement of an appointment is coordinated 
by means of WS-AtomicTransaction. For example, whenever a patient must undergo 
some treatment in multiple wards, the involved wards start an atomic (possibly even 
ACID) transaction. Furthermore, the treatment within an individual ward might be 
complex and consist of several sequences, branches, and other typical workflow ele-
ments. For example, if the patient's blood pressure is too high, some additional exami-
nation steps might have to be performed. Therefore, the wards internally use 
BPEL4WS implementations (possibly of different vendors) to coordinate the process 
of treating the patients. 



On top of WS-Coordination, WS-AtomicTransaction, and BPEL4WS, the hospital 
eventually uses WS-BusinessActivity to coordinate the multiple wards' BPEL4WS 
implementations. For example, if the patient suffers a heart attack during his appoint-
ment in the rehabilitation center, the emergency ward (more precisely, its BPEL4WS 
instance) joins the overall activity as a participant by registering with the WS-
Coordination service and starts the emergency treatment. Moreover, some compensat-
ing actions have to be invoked to cancel the (previously successfully committed) ap-
pointment with the department of cardiology. 

The resulting architecture of the hospital's patient tracking system might be very 
similar to Figure 1. For example, the participants 1 and 2 shown in Figure 1 might be 
the department of cardiology and the rehabilitation center, whereas the emergency 
ward might be the third participant joining the overall BusinessActivity only later, 
shortly after the patient has suffered the heart attack. In this architecture, all coordina-
tion messages are transmitted using dedicated SOAP messages and are WS-
BusinessActivity notifications as described in [4]. 

It is not possible to implement this scenario using only BPEL4WS, because coor-
dination of distributed scopes is not supported. Only local scopes, i.e. sets of service 
invocations, can be coordinated using the LRT protocol of BPEL4WS. In the next 
section, we will show how BPEL4WS has to be extended to be able to fully imple-
ment distributed coordination scenarios such as the hospital example. 

5 Fully Incorporating WS-BusinessActivity into BPEL4WS 

5.1 The State of the Art 

Every BPEL4WS instance is a Web Service that invokes other Web Services. These 
“smaller” services can therefore also be classified as “nested” or “finer-grained” Web 
Services. For example, the department of cardiology's BPEL4WS workflow might 
invoke the Web Service that calculates the costs of the treatment. This computation 
can be a complex task that might involve several legacy database queries, and so the 
treatment calculation Web Service might be a (finer-grained) BPEL4WS workflow 
itself. 

The main question now is: Why couldn't the program that coordinates the distrib-
uted scopes (up to now: the BusinessActivity coordinator) be a BPEL4WS workflow 
as well? The answer is quite simple: It could, if only the way in which BPEL4WS 
coordination signals (e.g. the compensate() method invocation) are sent was pre-
scribed to be SOAP notifications and not left to the implementor. If this was the case, 
no difference would have to be made between local and distributed coordination. To 
achieve this, we will introduce a new dedicated handler type for coordinating distrib-
uted scopes in Section 5.2. BPEL4WS already includes three handler types – event 
handlers, fault handlers, and compensation handlers. 

The first idea might be to use one of the already existing handler types for coordi-
nating distributed scopes, but it turns out that neither of them is suitable for this pur-
pose, because all of them are only required to accept some kind of local “signals” such 



as implementation-defined method invocations, e.g. compensate(). Distributed 
coordination, however, requires explicit (SOAP) messages instead of local “signals”. 

The second idea might be to use the most suitable handler type for distributed co-
ordination, the compensation handler, and change the BPEL4WS specification so that 
the “compensate” signal has to be transmitted by means of a Compensate SOAP 
notification. However, compensation alone is not yet full-fledged distributed coordina-
tion. 

5.2 The Coordination Handler Concept 

Accordingly, a new type of handler is required to process all notifications related to 
coordination. This handler type will be called a coordination handler. Like each of the 
other handler types, a compensation handler can be attached to either the entire proc-
ess or to an individual scope. The crucial difference, however, is that coordination 
handlers accept signals only as explicit SOAP notifications (and not as internal 
method invocations) that can also be sent from outside the local BPEL4WS instance. 
As a result of introducing a handler type for all coordination messages including 
compensate, BPEL4WS' compensation handler will become redundant. 

Every coordination handler must be able to process the notifications as defined in 
WS-BusinessActivity. The set of BusinessActivity notifications is subdivided into 
coordinator-generated and participant-generated messages. In this context, the “coor-
dinator” is the BPEL4WS activity that calls a (local or distributed) coordination han-
dler, e.g. the emergency ward's BPEL4WS instance shown in Figure 3. Consequently, 
these coordinator-generated messages have to be processed by every coordination 
handler, namely: Completed, Fault, Compensated, Closed, Canceled, 
Exit, GetStatus, and Status. In turn, every coordination handler must be able 
to send WS-BusinessActivity's participant-generated notifications, more precisely: 
Close, Cancel, Compensate, Faulted, Exited, GetStatus, Status, and 
maybe also Complete (which is only part of the BusinessAgreementWithCoordina-
torCompletion protocol of WS-BusinessActivity [4]). These reply messages flow in 
the reverse direction of the arrows shown in Figure 3. 

In order to fully support distributed coordination, it is essential to support not only 
the set of SOAP notifications specified by WS-BusinessActivity, but also the basic 
commands of the underlying WS-Coordination specification [2]. These are in particu-
lar Register and RegisterResponse, CreateCoordinationContext (to 
start a new transaction) and CreateCoordinationContextResponse. Since 
probably not all BPEL4WS instances actually require transactional behavior, provid-
ing a scope with a coordination handler should be optional. 

Since the coordinator and the participant must be able to communicate with each 
other during the course of the transaction, we suggest using the WS-Notification 
specification family [10] for establishing the two-way connection of SOAP notifica-
tions between the coordinator and the participant. Therefore, it would in particular be 
required for the WS-Coordination Register and RegisterResponse notifica-
tions to include the contents of a WS-Notification Subscribe message, i.e. the 
coordinator must explicitly register with the participant for the coordinator's coordina-
tion messages and vice versa. 



5.3 Impact on the Hospital Example 

The capability of distributed coordination implies several architectural changes to the 
hospital example described in Section 4. First of all, the most important simplification 
is that WS-BusinessActivity, which had been responsible for coordinating the distrib-
uted BPEL4WS instances, is no longer used. Instead, the functionality of the Busi-
ness-Activity-compliant coordination service, probably a hard-coded service survey-
ing the invocations of the registered BPEL4WS instances, is taken over by an explic-
itly modeled BPEL4WS workflow. Figure 3 shows what this coordinating workflow 
might look like for the hospital example. Some important aspects of this implementa-
tion will now be discussed. 

begin end

rehabilitation 
appointment

cardiology 
appointment

cardiology 
treatment

wait
rehabilitation 
treatment

wait
cc

c c

c

<sequence>

<sequence>

<flow>

<sequence>

compensate 
appointments

emergency 
treatment c

make new 
appointments

c
c

register for
activity/

transaction as
participant

<sequence>

<sequence>

start cardiology 
workflow

start rehabilitation 
workflow

c

c

c

c

rehabilitation workflow

cardiology workflow

emergency workflow
coordinating workflow

 

Figure 3 shows a possible architecture of the hospital example as a BPEL4WS workflow with 
coordination handlers. Boxes with “c” represent the coordination handlers; the dashed arrows 
indicate the flow of the emergency workflow’s SOAP notifications. 

Let's first consider the coordination handler of the coordinating (i.e. overall patient 
treatment) workflow. In order to support the ad-hoc change to its set of active partners 
when the emergency ward joins the transaction, the overall treatment workflow in-
stance must be able to process the Register notification (i.e. “join the existing 
transaction/activity as a participant”). The emergency ward's workflow then has to 
compensate all successfully made appointments, call the appropriate heart attack 
treatment BPEL4WS activities (not shown in Figure 3), and possibly make new ap-
pointments. 

An important difference to an implementation on the mere basis of BPEL4WS’ al-
ready specified compensation handlers is as follows: The emergency workflow itself is 
now able to compensate individual steps of the cardiology and rehabilitation work-
flows (see the two upper arrows). This would not be possible with compensation han-
dlers, because they only accept signals from within the same workflow engine. As a 
result, BPEL4WS scopes can now be coordinated even if they are distributed. 



5.4 General Advantages 

In general, the main advantages of using BPEL4WS with coordination handlers in-
stead of WS-BusinessActivity for coordinating distributed scopes can be listed as 
follows: 
• No distinction has to be made between the implementation of local and distributed 

scopes; both can be implemented by means of BPEL4WS. A local scope differs 
from a distributed scope only by the fact that there is no complete implementation 
of the coordination handler, because accepting the Compensate notification is 
sufficient for local coordination. 

• Code redundancy is minimized, because the compensation business logic is kept at 
the respective scope's coordination handler itself and does not have to be copied to 
the invoking activity (as this is the case for compensation handlers). 

• The coordination service does not have to be hard-coded. Instead, it can be de-
scribed as an explicit BPEL4WS “coordinating” workflow, thereby minimizing the 
number of mechanisms for implementing long-running business workflows. 

• Compensation of individual activities can be triggered by activities that are not 
within the same workflow engine, e.g. by the emergency workflow. 

• Since also the messages defined by the WS-Coordination specification are sup-
ported by every coordination handler, even WS-AtomicTransaction could be in-
corporated into BPEL4WS. In order to support atomic distributed coordination, a 
coordination handler would only have to be prescribed to additionally support the 
set of SOAP notifications described in the WS-AtomicTransaction specification. 
As a result, replacing compensation handlers with coordination handlers leverages 

BPEL4WS LRT to support distributed transactions. Basically, doing so does not 
change anything about BPEL4WS' underlying workflow and nested scope concept, 
but only makes BPEL4WS scopes more flexible. When looking at Table 1 again, it 
becomes obvious that all differences have been overcome by adding the coordination 
handler concept to BPEL4WS. In particular, the business and fatal error handling 
concepts have been consolidated, and the number of participants of a BPEL4WS in-
stance has become dynamic since the process' coordination handler now is able to 
process the Register notification. 

6 Conclusions 

Initially, BusinessActivity and BPEL4WS Long-Running Transaction seemed to be 
rather orthogonal concepts with different or even incommensurate goals and para-
digms. But when having a closer look at the two specifications, the main difference 
turns out to be BPEL4WS' lacking ability to support distributed coordination, al-
though its Long-Running Transaction protocol already supports the coordination of 
local BPEL4WS scopes. 

The suggestion of this paper is that BPEL4WS’ compensation handlers should be 
replaced by more powerful coordination handlers which accept coordination signals 
among nested scopes only as SOAP messages. As a result, WS-BusinessActivity is not 
needed any longer, and we have demonstrated the advantages of using the approach 
without WS-BusinessActivity on the basis of a hospital's patient tracking system. 



Moreover, coordination handlers could also be used for reaching atomic agreement 
among distributed, short-running BPEL4WS scopes and thereby also including the 
functionality of WS-AtomicTransaction. Eventually, we believe that a single aim – in 
this case, the implementation of long-running transactional activities – should be pur-
sued by a single powerful mechanism only. 

Acknowledgement 

This paper was written as part of a Web Services research project at DaimlerChrysler 
Research and Technology in Ulm, Germany and a diploma thesis at the Department of 
Applied Information Processing (SAI) of Prof. Schweiggert at the University of Ulm. 

References 

1. S. Thatte et al. Business Process Execution Language for Web Services. Version 1.1. May 
2003. Available at http://www.ibm.com/developerworks/library/ws-bpel/ 

2. D. Langworthy et al. WS-Coordination specification. September 2003. Available at 
http://www-106.ibm.com/developerworks/library/specification/ws-tx/#coor 

3. D. Langworthy et al. WS-AtomicTransaction specification. September 2003. Available at 
http://www-106.ibm.com/developerworks/library/specification/ws-tx/#atom 

4. D. Langworthy et al. WS-BusinessActivity specification. January 2004. Available at 
http://www-106.ibm.com/developerworks/library/specification/ws-tx/#ba 

5. J. Gray, A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann 
Series in Data Management Systems. 1992. 

6. F. Leymann, D. Roller. Production Workflow: Concepts and Techniques. Prentice Hall. 
2000. 

7. J. Gray. The Transaction Concept: Virtues and Limitations. In Proceedings of the 7th Inter-
national Conference on Very Large Data Bases. Pages 144-154. September 1981. 

8. A. Ceponkus et al. Business Transaction Protocol (BTP). BTP Committee specification. 
April 2002. Available at http://www.oasis-open.org/committees/business-transactions/ 

9. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana. Service-oriented computing: The 
next step in Web services. Communications of the ACM, Volume 46 Issue 10. October 
2003. 

10. S. Graham et al. WS-Notification specification. March 2004. Available at 
http://www-106.ibm.com/developerworks/library/specification/ws-notification/ 

 
 


