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Geometry of Locally Finite Spaces 

Presentation of a new monograph 

V. Kovalevsky, Berlin 

Abstract. 

The book presents an axiomatic approach to the topology and geometry of locally finite spaces 

with applications to image processing, computer graphics and to other research areas. Special 

emphasis is placed on computer solutions of topological and geometrical problems. Basic 

topological notions such as connectedness, frontier, opening frontier, topological ball, sphere, 

manifold with and without boundary etc. are defined for locally finite spaces independently of the 

topology of Euclidean space. The author depicts ways for an explicit computer representation of 

topological spaces whose properties correspond to the axioms of classical topology. He introduces 

a new concept of digital geometry based on the topology of locally finite spaces. The concept is 

independent from Euclidean geometry. The author also introduces a new notion of continuous 

connectedness preserving maps, which substitute continuous functions in topology and geometry 

of locally finite spaces. New data structures and numerous geometric and topological algorithms 

are presented. Most algorithms are accompanied by a pseudo-code based on the C++ programming 

language. 

Locally Finite Spaces 

Locally finite spaces serve to overcome the existing discrepancy between theory and 

applications: The traditional way of research consists in making theory in Euclidean space 

while applications deal only with finite discrete sets. The reason is that even a small subset of 

a Euclidean space cannon be explicitly represented in a computer because such a subset, no 

matter how small it is, contains infinitely many points. 

Locally finite spaces are on one hand theoretically consistent and conform with classical 

topology and on the other hand explicitly representable in a computer. 

 

Aims of the Monograph 

The author wishes to demonstrate that it is possible to develop a locally finite topology well 

suited for applications in computer imagery and independent of the topology of the Euclidean 

space. 

The second aim is to present some advises for developing efficient algorithms in computer 

imagery based on the topology and geometry of locally finite spaces, in particular of abstract 

cell complexes. Numerous algorithms of that kind are presented in the monograph. 

The main topics of the monograph are: 

     Axiomatic Approach to Digital Topology; 

     Abstract Cell Complexes − an Important Particular Case; 

     Continuous Mappings among Locally Finite Spaces; 

     Digital Lines and Planes; 

     Theory of Surfaces in a Three-Dimensional Space; 

     Data Structures; 

     A Universal Algorithm for Tracing Boundaries in nD spaces; 

     Labeling Connected Components; 

     Tracing, Encoding and Reconstructing Surfaces in 3D spaces; 

     Topics for Discussion − Irrational Numbers; Optimal Estimates of Derivatives; 

     Problems to Be Solved. 
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New Axioms 

Why was a new set of axioms suggested? 

The relation of axioms of the classical topology to the demands of computer imagery is not 

clear for a non-topologist. It is e.g. not clear, why do we need the notion of open subsets 

satisfying classical axioms. 

The new axioms are related to the notions of connectedness and to that of the boundary of a 

subset. These notions are important for applications, in particular for image analysis. 

We have demonstrated, that classical axioms can be deduced from the new axioms as 

theorems. In this way classical axioms become related to the desired properties of 

connectedness and of boundaries. 

Axiom 1: For each space element e of the space S there are certain subsets containing e, 

which are neighborhoods of e. The intersection of two neighborhoods of e is again 

a neighborhood of e. Each element e has its smallest neighborhood SN(e). 

Axiom 2: There are space elements, which have in their SN more than one element.  

Axiom 3: The frontier Fr(T, S) of any subset T⊂S is thin. 

The notion of a thin frontier is exactly defined in the book. Fig. 1a and 1b illustrate this 

notion. In Fig. 1a space elements are squares with the well-known 4-neighborhood relation. 

The frontier of the shaded area consists of the squares labeled by black and white disks. The 

frontier is labeled by black and white disks; it is thick. In Fig. 1b space elements are squares, 

lines and dots. The frontier of the shaded area consists of bold lines, both solid and dotted, 

and of dots labeled by black and white disks. It is thin. 

 

 

 

 

 

 

 

Fig. 1  Examples of frontiers:  

A thick frontier (a); a thin frontier (b); a frontier with gaps (c) 

 

Axiom 4: The frontier of Fr(T, S) is the same as Fr(T, S), i.e. Fr(Fr(T, S), S)=Fr(T, S). 

Fig. 1c illustrates the case not satisfying Axiom 4. An important property of the frontier is, 

non-rigorously speaking, that it must have no gaps, which is not the same, as to say that it 

must be connected. More precisely, this means that the frontier of a frontier F is the same as 

F. For example, the frontier in Fig. 1c has gaps represented by white disks. Let us explain 

this. Fig. 1c shows a space S consisting of squares, lines and dots. The neighborhood relation 

N is in this case non-transitive: The neighborhood SN(P) of a dot P contains some lines 

incident to P but no squares. The SN of a line contains one or two incident squares, while the 

SN of a square is the square itself. The subset T under consideration is represented by gray 

elements. Its frontier Fr(T, S) consists of black lines and black dots (disks) since these 

elements do not belong to T, while their SNs intersect T. The white dots do not belong to 

F=Fr(T, S) because their SNs do not intersect T. These are the gaps. However, Fr(F, S) 

a b c 



 3

contains the white dots because their SNs intersect both F and its complement (at the dots 

themselves). Thus in this case the frontier F=Fr(T, S) is different from Fr(F, S). 

 

Properties of ALF Spaces 

We call a locally finite space satisfying our Axioms an ALF space. We have demonstrated in 

Section 2.3 of the book that the classical axioms can be deduced as theorems from our 

Axioms and that an ALF space is a particular case of the classical T
0
 space, but not of a T

1
 

space.  

An abstract cell complex is a particular case of an ALF space characterized by an additional 

feature: the dimension function dim(a), which assigns a non-negative integer to each space 

element in such a way that if b∈SN(a), then dim(a)≤dim(b). Elements of an AC complex are 

called cells. We use the well-known definition of abstract cell complexes suggested by 

Steinitz [Stein08]: 

Definition AC: An abstract cell complex (AC complex) C=(E, B, dim) is a set E of abstract 

elements (cells) provided with an asymmetric, irreflexive, and transitive binary relation 

B ⊂ E × E called the bounding relation, and with a dimension function dim: E → I from E 

into the set I of non-negative integers such that dim(e') < dim(e") for all pairs (e',e")∈B.  

A cell is never a subset of another cell. 

We have augmented the above definition by a topological definition of the dimensions of 

space elements. Dimensions of cells represent the partial order corresponding to the bounding 

relation. Let us call the sequence a<b< ... <k of cells of a complex C, in which each cell 

bounds the next one, a bounding path from a to k in C. The number of cells in the sequence 

minus one is called the length of the bounding path. 

Definition DC (dimension of a cell): The dimension dim(c, C) of a cell c of a complex C is 

the length of the longest bounding path from any element of C to c.  

This definition is in correspondence with the well-known notion of the topological dimension 

or height of an element of a partially ordered set [Birk61]. 

According to Definition DC the dimension of a cell c is defined relative to a subcomplex 

containing the cell c because the length of the longest bounding path can be different in 

different subcomplexes.  

An example of calculating the dimensions of cells is shown in Fig.2. The cell v has dimension 

3 since the length of the path p<e<f<v is equal to 3. 

 

 

 

 

 

 

 
 

 
Fig. 2  A complex with bounding relations represented by arrows. 

An arrow points from a to b if a bounds b 

The dimension of the space elements is an important property. Using dimensions prevents one 

from errors which can occur when using an LF space without dimensions. An example of a 

typical error is presented in the book. 

 p 

 e  f  

 v 
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We have introduced the notion of an n-dimensional Cartesian complex as the Cartesian 

product of n one-dimensional complexes [Kov86]. This gives us the possibility to define 

coordinates of the cells. We call them combinatorial coordinates. Fig. 3 shows the closures 

and the smallest neighborhoods (SONs) of cells of Cartesian complexes of different 

dimensions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Closures and SONs of cells of Cartesian AC complexes 

Combinatorial Homeomorphism, Balls and Spheres 

The notion of the homeomorphism of two sets is a fundamental notion of topology: Two sets 

are called homeomorphic or topologically equivalent if there is a continuous bijection from 

one to the other whose inverse is also continuous. There is another classical way to define the 

homeomorphism. It is directly applicable to complexes and can be extended to other locally 

finite spaces. It is called the combinatorial homeomorphism and is based on the notion of 

elementary subdivisions [Stil95, p. 24]. We shall apply it to AC complexes. 

The original concept of an AC complex is too general: It is e.g. possible to define a "strange" 

AC complex with a 1-cell bounded by more than two 0-cells, or with a 2-cell that has a hole, 

or with a 3-cell being a torus, etc. All this does not contradict the above Definition AC. To 

avoid such situations elementary subdivisions have been defined in classical topology (see 

e.g. a modern survey in [Stil95]) on the base of the topology of Euclidean space and of 

Euclidean complexes. Since our aim is to develop a theory independent of the theory of 

Euclidean spaces, we shall suggest new definitions based exclusively on the topology of AC 

complexes. We suppose that the notion of the combinatorial homeomorphism is not 

applicable to any complex. There must be a limitation excluding "strange" complexes as 

mentioned above. This limitation should be of the same nature as the classical limitation 

defining Euclidean cells as convex sets.  

One possible way is to try to introduce a class of complexes which are in certain sense similar 

to Cartesian ones since Cartesian complexes have the desired properties: A 1-cell is bounded 

by no more than two 0-cells; a 2-cell has no holes; a 3-cell is a topological three-dimensional 

ball, etc. However, we do not see a possibility to define the class of complexes homeomorphic 

to Cartesian ones before having defined the notions of a topological ball and a topological 

sphere, which are necessary to define the subdivisions. Our intention is to define topological 
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notions before geometric ones, because we believe that geometry can be consistently 

constructed only after the corresponding topological space is already defined. Topology must 

be the foundation of geometry and not vice versa. Therefore we do not employ geometric 

notions like metric and Euclidean coordinates in topological definitions. Thus we cannot 

employ the classical definition of a topological ball, which is a set of points having a limited 

distance to a center point. 

We have accommodated the notions of a topological ball and of a topological sphere to 

complexes, while introducing the notions of combinatorial balls and spheres which we denote 

by AC balls and spheres correspondingly. To avoid the usage of “strange” complexes we have 

introduced the notions of proper cells and complexes which can be regarded as a substitute 

for convex cells of Euclidean complexes. 

The notion of a proper cell has lead to new definitions of balls and spheres independent of 

geometry and metric. The following Fig. 4 is an illustration to the notions of combinatorial 

balls and spheres. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  Examples of AC balls and spheres of dimensions from 0 to 3 

The purely combinatorial definitions of  a topological ball and a topological sphere 

independently of the Euclidean space have provided the possibility to justify the well-known 

notion of combinatorial homeomorphism for locally finite spaces. It is based on elementary 

subdivisions. Fig. 5 shows an example of the elementary subdivision of a two-dimensional 

cell. 

 

 

 

 

 

 

 
Fig. 5  An example of the elementary subdivision of a 2-cell; the original cell (a) and its subdivision (b) 

Exact definitions and proofs are to be found in the book. 
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Fig. 6 presents an example demonstrating the combinatorial homeomorphism of a square and 

a triangle. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6  A subdivision of a digitized square (a) which is isomorphic to a digitized triangle (b);  

"fat points" denote the new points introduced during the subdivision 

 

We also have generalized the notions of a boundary and a frontier while having introduced the 

notions of an opening frontier, opening boundary and generalized boundary. Thus for 

example a punctured two-dimensional sphere (i.e. a sphere without a point) is from the point 

of view of the new definitions a manifold with an opening boundary while from the classical 

point of view it is no manifold at all. 

Continuous Functions and Connectivity Preserving Maps 

In classical topology homeomorphism is defined by means of continuous mappings between 

topological spaces. The possibilities to apply this idea to locally finite spaces are rather 

limited: We have demonstrated in Section 4.2 that isomorphism is the only classical 

homeomorphism possible between two locally finite spaces (LFS) 

We have demonstrated that it is impossible to continuously map one LFS onto a "greater" 

space, i.e. onto a space containing more elements. We have suggested to consider more 

general correspondences between X and Y, assigning to each cell of X a subset of Y rather than 

a single cell [Kov93, Kov94]. A connectivity preserving map is continuous if the preimage of 

each open subset is open. Fig. 7 shows two examples of CPMs. 

 

 

 

 

 

 

 

 

 
 

Fig. 7  Examples of correspondences: F is connectedness 

preserving, simple and not continuous; G is continuous and not simple. 

 

We have also demonstrated that combinatorial homeomorphism X~Y according to the 

Definition CH (Section 3.6, p. 57) uniquely specifies a continuous CPM F: X�Y whose 

inverse correspondence is also a continuous CPM. 
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Digital Geometry. Digital Lines and Planes 

Sections 6 and 7 of the book contain definition of digital lines and planes. The definitions are 

independent of the corresponding Euclidean notions. This means that a digital line is defined 

not as the result of digitizing a Euclidean line. We define a half-plane as a set of elements 

whose combinatorial coordinates satisfy a linear inequality and a digital straight segment as a 

connected subset of the boundary of a half-plane. We distinguish between two types of digital 

curves in a two-dimensional space: visual curves are sequences of pixels (two-dimensional 

cells) and are well suited for representing curves in an image; boundary curves are sequences 

of zero- and one-dimensional cells and are well suited for purposes of image analysis. We 

consider mainly boundary lines rather than visual lines. 

Section 7 of the book presents a complete theory of digital straight segments (DSS) being 

regarded as boundary lines. Equation defining such a DSS and the algorithm of recognizing a 

DSS are similar to the well-known equations and algorithms for visual lines, but there are also 

some important differences. 

A fast algorithm for subdividing a digital boundary curve into longest DSS is presented in this 

section. A method of economically and loss-free encoding sequences of DSSs is described in 

Section 7.2.5. 

Section 7.3 contains the theory of digital planes; Section 8 − that of surfaces in a three-

dimensional space and Section 9 − the theory of digital arcs. 

Applications of the DSSs 

1.  Estimating the perimeter of a subset. 

2.  Representing objects in 2D images as polygons for the purpose of shape analysis. 

3.  Economical and exact encoding of images.There exist many different DSSs going through 

given two points. To distinguish them three additional integer parameters L, M, N must be 

specified. M/N is the slope of the base of the DSS, L is the value of the left side H(x, y) of the 

equation H(x, y)=0 of the base at the starting point. A DSS can be exactly reconstructed from 

its end points and the additional parameters. There is a possibility to economically encode a 

sequence of DSSs while using at the average 2.3 byte per DSS. Fig. 8 presents an example of 

fast encoding of an image by DSS polygons and of recognizing all disk-shaped objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8  Example of an image of a wafer with recognized disk-shaped objects 

The binary image of 832×654 pixels shown in  Fig. 8 was encoded by DSSs. Distorted disk-

shaped objects in the image were recognized. The whole processing of encoding the image 

and recognizing 57 objects took 20 ms on a PC with a Pentium processor of 700 MHz 
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Applications and Algorithms 

Section 11 of the book starts with recommendations for designers of algorithms. We 

recommend not to use adjacency relations, but rather to consider all topological and 

geometrical problems from the point of view of locally finite topological spaces (ALF spaces) 

or, even better, of AC complexes. Complex have some advantages as compared to other ALF 

spaces due to the presence of the dimensions of cells. The dimensions of cells make the work 

with a topological space easier and more illustrative and help avoiding contradictions. Section 

11.1 contains concrete recommendations for ways of using AC complexes for the 

development of algorithms in computer imagery. 

Section 11.2 contains descriptions of various algorithms for tracing and encoding boundaries 

in 2D images and in 2D subspaces of n-dimensional spaces. Among them is the universal 

algorithm for tracing boundaries of 2D slices in nD images; n=2, 3, 4; and the algorithm for 

generating the block cell list of a segmented multicolored image. The block cell list is a data 

structure developed by the author [Kov89]. It enables an economical and loss-free encoding 

of the image and is well suited for the image analysis because it contains the full topological 

and geometrical information. Relations between subsets of the image are available without a 

search. 

Sections 11.3 to 11.7 of the book contain descriptions of the following algorithms: 

1) Loss-free encoding of digital straight segment with additional parameters; 

2) Exact reconstruction of n-dimensional images from boundary codes; n=2, 3, 4; 

3) Labeling connected components, two different algorithms; 

4) Computing skeletons of subsets in 2D and 3D; 

5) Algorithm for topological investigations. 

Section 12 describes the method of constructing convex hulls in three dimensional spaces. 

Section 13 is devoted to tracing and encoding of surfaces in a three dimensional space. It 

contains descriptions of the following four algorithms: 

a) The simplest encoding of a surface by the depth-first search; 

b) Loss-les encoding of a surface by its Euler circuit; 

c) Spiral tracing method producing a handle decomposition of the surface along with its 

code;  

d) Economical encoding of surfaces by the "Hoop Code" with less than 2 bits per facet. 

Most algorithms are accompanied by a pseudo-code based on the C++ programming 

language. 

Topics for Discussions and Problems to be Solved 

The last section of the monograph is devoted to disputable questions of the necessity and 

possibility to avoid the usage of irrational numbers and of the optimal method of calculating 

derivatives of functions, that are defined with a limited precision. 

Most sections of the monograph present some problems to be solved. 
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