
A Realtime Multichannel Environment

for Microphone Arrays

M. Eichler, A.Lacroix

Institute of Applied Physics, J.W.Goethe-University, Frankfurt, Germany

eichler@iap.uni-frankfurt.de

Abstract: Microphone arrays are widely used in applications such as beam-

forming, sound field analysis, sound source localization, speaker tracking, noise

cancellation and others. Aiming at implementing a realtime application, a software

environment running on Microsoft Windows XP has been created for full-duplex

realtime data processing. The system comprises a data-handling class library

(coded in native C++) and a graphical user interface (GUI) written in C#.NET.

The data-handling framework supports any number of audio I/O devices (and thus,

channels); all active devices are controlled and run synchronously. Filter algorithm

development is supported by a C++ programming interface which allows

implementing custom filter code in satellite dynamic link libraries (DLLs), each of

which again may handle any number of input and output channels. At runtime,

multiple filter DLLs can be active simultaneously and are controlled via the GUI.

In this paper, the concept of the developed software environment is outlined. Also,

using the delay-and-sum beamformer as example, the working principle is

demonstrated including analysis tools like oscilloscope and geometry editor.

1. Introduction

A microphone array consists of two or more microphones arranged in a fixed geometric

pattern, uniformly or non-uniformly spaced in one or more dimensions. Processing the sound

signals from each microphone, the directivity of the array as a whole can be shaped and

controlled (beamforming) ([1]). Using beamforming and other signal processing techniques,

detection of sound sources is possible by determining the respective direction of arrival

(DOA) of sound waves impinging on the array. Conference systems can be equipped with

microphone arrays that allow for microphone-independent voice transmission, thus giving

more movability and comfort to the speaker. Other applications lie in the field of hearing aids

(direction filtering), speech enhancement for ASR systems, automotive telephony and voice

control, mobile devices and others. With the goal to obtain an evaluation and testing tool for

microphone array applications, a real-time full-duplex environment has been developed which

will be described in this paper.

2. Objective

The main objective in designing the system was to obtain a scalable framework running on a

MS Windows XP platform, which could be easily usgf" cpf" gzvgpfgf0" Vjg" vgto" ÐuecncdngÑ"
means that signal acquisition should be possible for an arbitrary number of channels

synchronously using standard components (no dedicated hardware); extendibility means that

new filter algorithms or array algorithms should be easy to integrate into the system using one

standard programming interface. Also, there should be a means to modify filter parameters

intuitively and visualize/analyse arbitrary signals via the graphical user interface (GUI). In

total, the following functionality is required:

‚" System shall work in real time

‚" Arbitrary number of input and output channels

‚" Arbitrary number of filters

- Filters shall be controllable via the GUI

- New filters shall be easy to add using a dedicated programming interface (API)

‚" Arbitrary signal routing between input/output channels and filters

‚" Multi-channel recording and replay

‚" Time-domain analysis functions (oscilloscope)

‚" Frequency-domain analysis functions (FFT, frequency response)

‚" Parametrization tool for microphone arrays

The hardware setup used is shown in fig. 1. The microphones used are beyerdynamic MCE 60

with spherical sensitivity characteristics; the microphone signals are pre-amplified and

converted to optical digital format (ADAT) by an RME Octamic-D module and fed into the

PC via an optical PCI bus card interface. Monitor or sound source signals are output via

another PCI audio interface, in our case an M-Audio Delta 1010 module. The software

described here uses entirely standard Windows I/O multimedia API calls (API = application

rtqitcoogtÓu"kpvgthceg+"cpf"eqwnf"jgpeg"cnuq"yqtm"ykvj"cp{"qvjgt"cwfkq"K1Q"jctfyctg0

Figure 1: Hardware setup. The component types given were used at our institute but are not

compulsory for using the developed software.

3. Solution

Since an MS Windows system by standard maps audio hardware Î regardless of its channel

number Î as a set of 2-channel stereo devices, the basic concept of the audio data handling

core is to handle and synchronise the data flow from/to a given subset of the present stereo

devices (fig. 2). For this, a multithreaded class hierarchy was developed which allows

selection of the desired devices (and thus, channels) and which cares for the synchronisation

of all devices selected. All data streams are converted to double precision floating point

format, which is used by the filter algorithms for internal data processing. Data is made

Microphones

ADAT PCI PCI

RME
Octamic-D

RME
HDSP 9652

M-Audio
Delta 1010

beyerdynamic
MCE 60

HP Tower PC
Windows XP

Single Processor
Pentium 4 / 3GHz

1 GB RAM
75GB HDD

Microphone
Pre-Amplifiers

A/D ADAT
Interface

PC Sound
Card

available to the filter algorithms by CDataSourceBuffer objects; output data is written to

CDataSinkBuffer qdlgevu0"Vjgug"qdlgevu"ecp"dg"nkpmgf"owvwcnn{"kp"qtfgt"vq"ÐyktgÑ"hknvgtu"
and audio devices, thus routing the signals in any desired way (see fig. 4).

Figure 2: Signal flow (example). Input and output channels are bundled by the OS and accessible

through stereo devices; data source and data sink objects are used to route the signals freely between

I/O channels and filters. The data format used inside the framework is floating point, double precision.

The programming languages used for the described system are shown in fig. 3. For the real-

time processing part, it was considered necessary to give the programmer the full control over

memory allocation and data type handling. Thus, native C++ was chosen. This is also a good

choice as most of the available high-performance mathematical libraries (which might be

necessary for implementing a certain filter algorithm) can be used directly with C++ while

a .NET interface is not yet available. On the other hand, implementing the GUI in C#.NET

proved a good choice as this language offers a very flexible way for programming MS

Windows applications: Both the garbage collection mechanism and the windows class library

allow for a very convenient design of the GUI framework, while the concept of the C#

language itself reduces the effort of implementation and code changes. As development

environment, the MS Visual Studio/VC++/C# 2005 Express was used ([2, 3]).

There are two class hierarchies implemented in the C++.NET interfacing layer and the native

C++ real-time layer (see fig. 4 and fig. 5). As the above and fig. 2 suggest, each two-channel

audio device is managed by a corresponding CRealtimeDeviceHandler/

CRealtimeDevice object pair. The devices used at a time are synchronized by a

CAudioProcessorKernel/CAudioProcessor object pair. Filters are instanciated from

external filter DLLs and controlled through CFilterHandler/CFilter objects.

Corresponding to each of its input and output channels, each object handling audio data (I/O

devices, filters, etc.) possesses CSignalSinkBuffer and CSignalSourceBuffer

and objects, respectively, each corresponding to one input/output channels. The data flow

between devices and filters is established by connecting CSignalSourceBuffer/

CSignalSource and CSignalSinkBuffer/CSignalSink objects.

Oscilloscope
Analyzer

etc.

Filter:
Switch

Filter:
Beam-
former

1

HD-
Player

HD-
Recorder

PC

Filter:
Beam-
former

2

Parameter
Controller

Stereo Devices

Signal
Sources

Signal
Sinks

Figure 3: Programming languages used. For real-time data processing, native C++ code was chosen in

order to give the programmer full control over data types, time-critical execution and memory

handling. For the GUI, C#.NET was used due to its flexibility and efficiency.

Figure 4: Class hierarchy, native C++ part. Any object handling audio data is derived from the class

CAudioDataHandler, which provides access to input and output data buffers through

CSignalSourceBuffer and CSignalSinkBuffer objects. Filter algorithm DLLs are

accessed through CFilterHandler objects while CRealtimeDeviceHandler objects care for

the data transfer from/to the audio hardware. Currently, the system works solely based on the wave

audio API, using CWaveAudioDeviceHandler and its subclasses; support for e.g. ASIO

interfaces could be added by deriving suitable classes from CRealtimeDeviceHandler.

class CUnmanagedObject;

class CAudioProcessorKernel;

class CAudioDataHandler;

class CFilterHandler;

class CRealtimeDeviceHandler;

class CWaveAudioDeviceHandler;

class CWaveAudioInputDeviceHandler;

class CWaveAudioOutputDeviceHandler;

class CHarddiskRecordingDeviceHandler;

class CHarddiskRecorderHandler;

class CHarddiskPlayerHandler;

class CSignalBuffer;

class CSignalSourceBuffer;

class CSignalSinkBuffer;

class CSignalMonitorBuffer;

AudioSystemFramework.DLL

Application / GUI
C#.NET

Interface & Management
C++.NET

Realtime Processing
Native C++

Figure 5: Class hierarchy, C++.NET part. These are the objects provided by the

AudioSystemFramework DLL. The application initializes a single CAudioSystem object which then

provides a list of all audio devices (CAudioDevice). Any subset of audio devices can be

selected and activated by an CAudioProcessor Object. Filters can be instanciated by selecting

a CFilterAlgorithm object from the library (CFilterLibrary). The created CFilter

object can then be wired with input/output devices by connecting the respective CSignalSource

and CSignalSink objects. Filter parameters can be read and modified through objects while real-

time signals can be monitored/displayed by capturing data from CSignalMonitor objects.

4. Filter API

A filter algorithm is implemented as a single native C++ DLL which is read by the framework

at runtime. This makes it possible to add new filter algorithms without modifying/recompiling

the entire application. Each filter DLL provides two functions through which a filter object

with a standard interface can be created and deleted. The filter object itself possesses member

functions which provide information to the framework about what number of input/output

channels are supported and what parameters are defined. Further, there are get/set routines for

reading and modifying parameter values and the core filter function ProcessBlock()

which does the actual filtering and will be called from the multi-threaded real-time kernel. In

order to implement a new filter, all the programmer has to do is implement the following

member functions:

void CMyFilter::Initialize(void)

void CMyFilter::SetDefaults(void)

void CMyFilter::ProcessBlock(double *pInput[], double *pOutput[])

Initialize() and SetDefaults() are used to initialize/reset the entire filter and

restore each parameter to default settings. ProcessBlock() receives pointers to the input

ref class CManagedObject;

ref class CAudioSystem;

ref class CAudioProcessor;

ref class CAudioDevice;

ref class CFilter;

ref class CRealtimeDevice;

ref class CHarddiskRecordingDevice;

ref class CHarddiskRecorder;

ref class CHarddiskPlayer;

ref class CFilterAlgorithm;

ref class CFilterLibrary;

ref class CFilterParameter;

ref class CSignal;

ref class CSignalSource;

ref class CSignalSink;

ref class CSignalMonitor;

data and output buffers for each channel and performs the actual filtering. The number of

input/output channels as well as parameter values can be read from dedicated member

variables.

Besides the above functions, some static data structures are also defined which are filled with

basic information about the filter (such as filter name, information about what the filter does,

number of input/output channels, and so on). This information is displayed to the user and is

used by the GUI to build up a generic controller window through which parameters can be

accessed and modified.

Once the DLL is compiled, it can be read at runtime and is available for instantiation from the

Filter Library (fig. 6). It is possible to have multiple instances of the same filter; also, multiple

filters from different DLLs can be active at the same time.

Figure 6: Filter Library (a) and generic filter control window (b). When a filter DLL is selected from

the library (a), the user can select how many input and output channels the filter shall have. Then, the

filter is created and a control window (b) is shown.

5. Example

On the following pages, some example screens will be shown to illustrate the functionality of

the software developed. It is built around the real-time processing kernel described above, and

offers a couple of operating and analysis tools. In our example, a delay-and-sum beamformer

having eight channels will receive input from eight hardware input channels. For this, an

Audio Processor window is opened and the necessary audio devices are selected (fig. 7). After

creating the eight-channel delay-and-sum beamformer filter, the hardware input channels are

connected to their cortgurqpfkpi" hknvgt" kprwv" ejcppgn" eqwpvgtrctvu" qp" vjg" ÐUkipcn" HnqyÑ" vcd"
*hki0" :+0" Pqy." chvgt" rtguukpi" vjg" ÐUvctvÑ" dwvvqp" kp" vjg" Cwfkq" Rtqeguuqt" ykpfqy." vjg"
microphone array can be exposed to a sound field and the output signal of the beamformer can

be made audible using the output channel connected to it.

(a)

(b)

Figure 7: Application main window with Audio Processor; on the right-hand side of the Audio

Processor window, four input audio devices and one output audio device are selected and thus

activated. Blocklength and samplerate are selected for all active devices simultaneously.

Figure 8: Connections of eight input channels to the corresponding input channels of a delay-and-sum

beamformer filter. The output of the beamformer is connected to an audio output channel. Real-time

rtqeguukpi"ecp"dg"uvctvgf"cpf"jcnvgf"d{"rtguukpi"vjg"ÐUvctvÑ"dwvvqp"qp"vjg"nghv0

Figure 9: Microphone array simulation. (a) Geometry Editor; (b) frequency response; (c) angular

frequency response.

For steering of the beamforming algorithm, a dedicated Geometry Editor is provided which

allows definition of an arbitrary spatial microphone arrangement; the resulting parameters for

controlling the beamformer are generated and transferred to the beamforming filter

automatically (fig. 9 (a)). Thus, when any settings are altered in the editor, the result is audible

in real time immediately. The Geometry Editor also calculates the frequency response of a

delay-and-sum beamformer dependent on frequency, array orientation and sound source

location (fig. 9 (b), (c)).

It is also possible to simulate the effect of a microphone array exposed to a free soundfield

when no microphones are present: Using a suitable multichannel fractional delay filter, the

wave propagation from the sound source to each microphone can be simulated ([4, 5]). In this

case, a sound signal produced by a built-in signal generator is input to the multichannel-delay

filter, and each of its outputs is connected to one beamformer input Î instead of a microphone

signal. Again, the necessary geometric information is obtained from the Geometry Editor.

Now, the sound source can be moved around the microphone array in virtual space and the

effect of the beamformer is made audible in real time.

(a)

(b)

(c)

microphones

sound source

Figure 10: Time-domain analysis. (a) Oscilloscope; (b) X-Y plot. The multitude of several signals on

the time axis is visualized conveniently by applying vertical offsets. Phase correlations between signals

get visible by picking one signal and plotting al other signals against it in an X-Y plot.

Figure 11: Frequency-domain analysis. (a) Fourier transform; (b) transfer function analysis. Cross

spectra and relative transfer functions are measured by applying arithmetic operations to pairs of

single-signal fourier transforms.

(a)

(b)

(a)

(b)

A variety of time-domain and frequency-domain analysis functions has also been realized

which allow visual analysis of the signals being processed or being heard. These oscilloscope

and spectrum analyzer functions include:

‚" Single-channel and multi-channel oscilloscope

‚" X-Y plot, plotting a group of signals versus one selected signal

‚" Single-channel and multi-channel FFT

‚" Power spectrum, cross spectrum and relative frequency response function

‚" Phase, phase delay and group delay measurement

Some examples are shown in fig. 10 and fig. 11. Also, Recorder and Player functions exist

which allow to record multichannel-data which can then be played / replayed to one or more

filter algorithms later.

6. Summary

A software system based on MS Windows XP has been developed capable of multi-channel,

full-duplex and real-time audio data processing. The system is intended as a prototyping tool

for real-time filter algorithm development and is suitable especially for microphone arrays. By

choosing a certain software architecture and certain programming languages, special care was

taken to make the system easily extensible with regard to audio APIs/drivers, the user

interface and the filter algorithms themselves: C# allows for an easy extension of the GUI,

while a C++ framework provides means to easily implement new filter DLLs, and also offers

classes from which new handlers might be derived enabling access to ASIO or other audio

driver architectures. The system is part of a research project and will be used for real-time

beamforming algorithm evaluation.

7. References

[1] M. Brandstein, D. Ward (eds.): "Microphone Arrays Î Signal Processing Techniques and

Applications", Springer-Verlag, Berlin, Heidelberg, New York, Jan. 2001

[2] A. Hejlsberg, Sc. Wiltamuth and P. Golde, "The C# Programming Language", ISBN 0-

321-15491-6, Addison-Wesley, 2003.

[3] G. Hogenson, "C++/CLI Î The Visual C++ Language for .NET", ISBN 1-59059-705-2,

Springer-Verlag, Berlin, Heidelberg, New York, 2006.

[4] T. I. Laakso, V. Välimäki, M. Karjalainen and U. K. Laine, "Splitting the Unit Delay",

IEEE Signal Processing Magazine, vol. 13, no. 1, pp. 30-60, Jan. 1996.

[5] M. Eichler, A. Lacroix, "Maximally Flat FIR and IIR Fractional Delay Filters With

Expanded Bandwidth"." kp" Rtqe0" GWUKREQ" 4229." Rq¦pcM." Rqncpf." rr03258-1042, Sept.

2007.

